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Abstract

A three-dimensional variational data assimilation (3-DVAR) algorithm for aerosols in
a WRF/Chem model is presented. The WRF/Chem model uses the MOSAIC (Model
for Simulating Aerosol Interactions and Chemistry) scheme, which explicitly treats eight
major species (elemental/black carbon, organic carbon, nitrate, sulfate, chloride, am-5

monium, sodium, and the sum of other inorganic, inert mineral and metal species) and
represents size distributions using a sectional method with four size bins. The 3-DVAR
scheme is formulated to take advantage of the MOSAIC scheme in providing com-
prehensive analyses of specie concentrations and size distributions. To treat the large
number of state variables associated with the MOSAIC scheme, this 3-DVAR algorithm10

first determines the analysis increments of the total mass concentrations of the eight
species, defined as the sum of the mass concentrations across all size bins, and then
distributes the analysis increments over four size bins according to the background
error variances. The number concentrations for each size bin are adjusted based on
the ratios between the mass and number concentrations of the background state. This15

system has been applied to the analysis and prediction of PM2.5 in the Los Angeles
basin during the CalNex 2010 field experiment, with assimilation of surface PM2.5 and
speciated concentration observations. The results demonstrate that the data assim-
ilation significantly reduces the errors in comparison with a down scaling simulation
and improved forecasts of the concentrations of PM2.5 as well as individual species20

for up to 24 h. Some implementation difficulties and limitations of the system are also
discussed.

1 Introduction

Aerosols are airborne suspensions of minute particles and impose fundamental im-
pacts on the earth’s environment and climate and on human health. To understand25

the physical, chemical, radiative and dynamical processes associated with aerosols,
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a variety of sophisticated atmospheric chemistry models have been developed and
coupled with atmospheric models (Seinfeld and Pandis, 2006; Fast et al., 2006;
Binkowski and Roselle, 2003). Parallel to the model development, the last decade has
witnessed great progress in the technology for observing aerosols, ranging from in-situ
speciated measurements to satellite- and surface-based remote sensing, leading to5

the establishment of a variety of observing networks (e.g., Diner et al., 2004).
The progress in both aerosol models and observing networks facilitates the develop-

ment and implementation of aerosol data assimilation. Data assimilation is a method-
ology for the integration of all available observations into models to produce aerosol
fields, which can be used to provide model initial conditions to improve forecasts, per-10

form diagnostic analyses, and for other applications. The meteorological community
has employed data assimilation for more than three decades to provide optimal initial
conditions for numerical weather prediction models and develop reanalysis products
for a wide spectrum of applications (Kalnay, 2003). In recent years, data assimilation
has increasingly been applied to aerosol analysis.15

Here we present an aerosol three-dimensional variational data assimilation (3-DVAR)
scheme. This 3-DVAR scheme is developed for the WRF/Chem (Grell et al., 2005), with
the comprehensive aerosol scheme known as the Model for Simulating Aerosol Inter-
actions and Chemistry (MOSAIC) (Zaveri et al., 2008). MOSAIC was first implemented
in WRF/Chem by Fast et al. (2006). Leveraging the generality of MOSAIC, this 3-DVAR20

system is used to estimate multi-species concentrations and their size distributions,
and assimilate observations of not only total concentrations but also speciated con-
centrations.

The outline of this paper is as follows: In Sect. 2, some challenges faced by aerosol
data assimilation and the strategies for meeting those challenges are described. In25

Sect. 3, a brief description of the MOSAIC scheme is given, and the analysis variables
used in the 3-DVAR scheme are defined; Sect. 4 presents the 3-DVAR scheme and
explains in detail the relationship between the observed and modeled variables. In
Sect. 5, the method used to estimate the background error covariance is detailed, with
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an emphasis on the vertical correlations. In Sect. 6, the 3-DVAR system is applied to the
prediction of PM2.5 in the Los Angeles basin during the CalNex (California Research at
the Nexus of Air Quality and Climate Change) 2010 field experiment, and assessments
of the performance of the data assimilation methodology and forecasts are presented.
Finally, a summary and discussion are given in Sect. 7.5

2 Challenges and strategies

Aerosol data assimilation faces some fundamental difficulties beyond those encoun-
tered in meteorological data assimilation. The difficulties arise primarily in treating
a large number of state variables. A sophisticated model may explicitly treat more
than a dozen species, which involve not only mass concentrations but also number10

concentrations. In particular, a large number of state variables are required to repre-
sent the wide range of aerosol size distributions, ranging from a few nanometers to
around 100 µm in diameter. A modal method represents the size distributions by fitting
the size distribution to a set of log-normal functions (Whitby, 1978). Four log-normal
functions, known as the nucleation, Aitken, accumulation and coarse particle modes,15

are often used (Seinfeld and Pandis, 2006). Another method uses a set of bins of in-
creasing size, and is referred to as a sectional or bin method (Gelbard et al., 1980;
Jacobson, 1997). With either of these two methods, scores of state variables are then
needed. A third method is to track the moments of the aerosol population (McGraw,
1997; Bauer et al., 2008). Although the moment method has been shown to be quite20

efficient, it still can lead to a large number of variables.
The large number of state variables poses multiple challenges in the practical im-

plementation of data assimilation. Data assimilation is computationally demanding by
nature. For generic formulations of different data assimilation schemes and their rela-
tionships, readers are referred to Daley (1991), Courtier et al. (1994), Ide et al. (1997),25

Cohn (1997), Ménard and Daley (1996) and Li and Navon (2001). Among the widely
used data assimilation schemes, the three-dimensional variational data assimilation
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(3-DVAR) scheme – the type used here – is the most computationally efficient. A 3-
DVAR scheme iteratively minimizes a cost function that depends on error covariance
matrices. Its demands on computational and memory resources increase rapidly as
the number of state variables increases (see Sect. 4). A greater challenge is related to
the limited number of observations. There are only a few hundred aerosol measuring5

surface stations in the United States, one of most dense networks in the world, and the
measurements are limited to a few parameters and to the surface. Instrumented-aircraft
measurements are even more limited in space and time. Satellite measurements pro-
vide global coverage, and the most common satellite observations are aerosol optical
depths (AODs). The available observations are insufficient to constrain all the vari-10

ables at spatial and temporal scales dictated by the inhomogeneity of aerosol emission
sources and their relatively short atmospheric residence time.

Due to the afore-mentioned computational and observational requirements, it will be
practically impossible for many years to establish a data assimilation system that can
simultaneously and reliably estimate mass and number concentrations of all the ma-15

jor species at the size bins. We must therefore judiciously choose a limited number
of variables to estimate, based on the aerosol treatment schemes, the desired accu-
racy for a given application, the geographical regions (urban, remote continental areas,
oceans, etc.), the effectiveness of the use of observations available, and the computa-
tional feasibility.20

Along this line, two types of schemes have been implemented. One scheme can
be traced back to Collins et al. (2001), who assimilated AODs in a three-dimensional
chemical transport model. This scheme uses AODs as the only data assimilation anal-
ysis variable and estimates their increments. Then the estimated AOD increments are
transformed into species mass concentration increments, which are in turn added to25

the model forecast. Following Collins et al. (2001), a number of studies assimilated
AODs in global and regional chemical transport models (Yu et al., 2003; Generoso
et al., 2007; Adhikary et al., 2008; Zhang et al., 2008; Sandu and Chai, 2011). Another
scheme first estimates the total aerosol mixing ratio increment and then distributes the
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total increment to mass concentrations of individual species. This type of scheme was
presented in Benedetti et al. (2008; 2009) and Mangold et al. (2011). In air quality ori-
ented applications, the total concentration, which is often the concentrations of PM2.5
(sizes smaller than 2.5 µm) and PM10 (size smaller than 10 µm), is used as the analysis
variable (Denby et al., 2008; Tombeete et al., 2009; Pagowski et al., 2010).5

The aerosol data assimilation methods described above can be characterized as
two-step schemes (Liu et al., 2011). The first step is to estimate the increments of
lumped variables, such as AODs, PM2.5 and PM10; and the second step is to calcu-
late the increments of individual species at specified sizes from the lumped variable
increments. These two-step schemes are suboptimal. The optimal scheme would be10

to directly estimate all the prognostic variables in the forecast model. When a rela-
tively simplified aerosol scheme is used, the number of state variables may be limited
so that all the state variables can be estimated simultaneously (e.g., Liu et al., 2011;
Sekiyama et al., 2011). We envision that for many years to come, two-step schemes will
inevitably be used for most comprehensive and sophisticated aerosol schemes, which15

treat scores of variables to represent mass concentrations and number concentrations
with multiple size distributions, but the number of lumped variables should gradually
increase as the number of observations increases and computational technology ad-
vances.

3 Aerosol scheme and analysis variables20

The design of an aerosol data assimilation scheme should be dependent on the aerosol
scheme used. In particular, different aerosol schemes generally require different data
assimilation analysis variables. Here we use the MOSAIC scheme in WRF/Chem.

MOSAIC is an actively developed aerosol module in WRF/Chem. It treats eight
aerosol species, including elemental/black carbon (EC/BC), organic carbon (OC), ni-25

trate (NO−
3 ), sulfate (SO2−

4 ), chloride (Cl−), ammonium (NH+
4 ), sodium (Na+). Other

unspecified inorganic species such as silica (SiO2), other inert minerals, and trace
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metals are lumped together as “other inorganic mass” (OIN). A sectional approach
is adopted to represent aerosol size distributions. The size bins are defined by their
lower and upper dry particle diameters. Each bin is assumed to be internally mixed
so that all particles within a bin have the same chemical composition, while particles
in different bins are externally mixed. The number of size bins, denoted as Nbin here,5

can be specified as appropriate for different applications. In MOSAIC, hence, the state
variables consist of mass concentrations of as many as 8Nbin, along with the number
concentrations of as many as Nbin.

While MOSAIC offers flexibility in specifying the number of size bins, four or eight
bins are commonly used. Here 4 bins are used. Accordingly, the state variables consist10

of 32 mass concentrations and 4 number concentrations. Because of this large number
of state variables, it is computationally impractical, if not impossible, to estimate all the
variables simultaneously for the model resolution and domain size as we are concerned
with. We thus choose instead to use a set of lumped variables as the data assimilation
analysis variables and employ a two-step data assimilation scheme.15

As in previous studies (Denby et al., 2008; Benedetti et al., 2009; Tombeete et al.,
2009; Pagowski et al., 2010), we may use PM2.5 or PM10 as the analysis variables. In
this study, four bins are used, and they are located between 0.039–0.1 µm, 0.1–1.0 µm,
1.0–2.5 µm, and 2.5–10 µm. The total mass concentration of PM2.5 or PM10 can be
expressed as a lumped variable. Here we introduce more analysis variables and form20

lumped variables consisting of the total mass concentrations of the aforementioned
eight species. Specifically, one data assimilation analysis variable is the total mass
concentration of one aerosol specie, that is, the sum of the mass concentrations across
the size bins used. We note that the data assimilation is designed to allow further
lumping some of these eight variables for particular applications, as well as using the25

first two, three or all four bins.
Once the lumped variables are formed, the two-step scheme is used to obtain the

analysis increment of these lumped variables by solving a 3-DVAR problem, and then to
partition these increments into increments for the individual species in each of the size
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bins. These partitioned increments are then added to the model forecast to produce
the final analysis. Accordingly, the number of aerosols for each bin is adjusted.

4 Data assimilation scheme

Here we describe the basic framework and then address the partition of the increments
of the lumped variables into the increments for the individual species in each of the size5

bins.

4.1 Basic formulation

We consider five analysis variables, xEC, xOC, xNO3
, xSO4

and xOTR, which are the

total mass concentrations of EC, OC, NO−
3 , SO2−

4 , and OTR. The chloride, ammonium,
sodium and “other organic aerosol” concentrations are lumped into one single variable10

OTR. Here we do not use eight species but only five species as analysis variables
for simplicity and also because the speciated measurements that are assimilated later
correspond to these five species. Following the notation suggested by Ide et al. (1997),

we express these five vectors as x, that is, xT =
(
xT

EC,xT
OC,xT

NO3
,xT

SO4
,xT

OTR

)
, where T

stands for transpose. The incremental form of the 3-DVAR cost function is written as:15

J(δx) =
1
2
δxTB−1δx+

1
2

(Hδx−d )TR−1(Hδx−d ). (1)

Here δx is the N-vector, known as the incremental state variable, which is defined as
δx = x−xb, where xb is the forecast or background state generated by the MOSAIC
scheme in WRF/Chem. B is the N×N-matrix, denoting the error covariance associated
with xb. The M-vector d = y −Hxb is known as the observation innovation, where y20

is an observation vector and the M×M-matrix R is the observation error covariance
associated with the observation y . The M×N-matrix H is an observational operator
that maps the state variable to the observation and is assumed to be linear here. The

13522



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

minimization solution is the so-called analysis increment δxa, and the final analysis is
xa = xb+δxa. This analysis is statistically optimal as a minimum error variance estimate
(e.g., Jazwinski, 1970; Cohn, 1997) or a maximum likelihood (Bayesian) estimate if both
forecast and observation errors have Gaussian distributions.

4.2 Construction of background error covariance5

For a given set of observations, the performance of a 3-DVAR scheme is dictated by
the specified background error covariance B and the observational error covariance R
in (1). R can generally be specified in a straightforward way and will not be discussed
in detail here. Statistically, an accurate estimate of B is required to render the analysis
xa the maximum likelihood estimate. More specifically, B plays the role of spreading10

out observational information contained in y to nearby model grid-points, smoothing
out small scale noise, and enforcing basic dynamic balance constraints.

In practice, however, B is incorporated in a suboptimal way. The primary reason is
that B is too large to handle numerically. For a high resolution model such as that used
here, the number of model grid points is on the order of 106. The number of elements15

in B is therefore 1012 multiplied by the square of the number of analysis variables. With
this size, B cannot be explicitly manipulated. A simplification or parameterization of B
is required.

To pursue simplifications, we use the following factorization

B = DCDT, (2)20

where D is the root-mean-square error (RMSE) matrix, a diagonal matrix whose ele-
ments are RMSEs, and C is the correlation matrix. With this factorization, the RMSE
and correlation matrices can be described and prescribed separately. Since D has an
effective dimension the same as that of δx, it is computationally treatable. The simpli-
fication applies primarily to C.25
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To simplify C, we use a three step procedure. The Cholesky factorization is first
applied. Since C is symmetric and positive definite, the Cholesky factorization is

C = C
1
2 (C

1
2 )T, (3)

where, the matrix C
1
2 is a lower triangular matrix. This Cholesky factorization is used

to ensure the symmetry and positive definiteness of C and reduce the computational5

cost. Using this Cholesky factorization, we can transform the analysis variable δx to
δz through

δx = DC
1
2δz. (4)

Substituting Eq. (4) into Eq. (1), we obtain the desired form of Eq. (1) as

J(δz) =
1
2
δzTδz+

1
2

(
HDC

1
2δz−d

)T
R−1

(
HDC

1
2δz−d

)
. (5)10

The transformed cost function is generally better conditioned, and thus this transfor-
mation expedites the convergence when it is iteratively minimized.

We here assume that the background errors of different types of aerosols are not cor-
related. This is an ad hoc assumption and is used simply to circumvent the computa-
tional complexity of treating the cross-correlations between different types of aerosols.15

Using this assumption, C becomes a block diagonal matrix, with the main diagonal
blocks being the correlation matrices of individual types of aerosols, and we have

C =


CBC

COC
CNO3

CSO4

COTR

 , (6)

where CBC, COC, CNO3
, CSO4

and COTR are the background error correlation matrices
associated with the five types of aerosols.20

13524



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Finally, a fundamental simplification of C can be achieved following Li
et al. (2008a, b), in which a Kronecker product method is used to construct C. Let
CS denote the background error correlation matrix of one specie, where S stands for
EC, OC, NO−

3 , SO2−
4 or OTR. We can then approximately express CS as

CS = CSx ⊗CSy ⊗CSz, (7)5

where ⊗ denotes Kronecker product, which is also known as vector or tensor product
(Graham, 1981). Here x, y , and z stand for the three coordinate directions in longitude,
latitude and the vertical. CSx is thus an nx ×nx correlation matrix in the x-direction.
Accordingly, CSy is an ny ×ny correlation matrix in the y-direction, and CSz an nz ×nz
correlation matrix in the z-direction. Here nx, ny , and nz are the numbers of grid points10

in the x, y and z directions, respectively. The most desirable property of Eq. (7) is that
these three one-dimensional correlation matrices are computationally treatable since
nx, ny , and nz are on the order of 102 to 103 in size in present day’s atmospheric
chemical models.

Another desirable property of Eq. (7) is that we have the Cholesky factorization15

C
1
2

S = C
1
2

Sx ⊗C
1
2

Sy ⊗C
1
2

Sz. (8)

Because of their treatable dimensions, C
1
2

Sx, C
1
2

Sy , and C
1
2

Sz are always pre-computed
and saved, which renders this 3-DVAR scheme particularly efficient computationally.
As showed in Li et al. (2008a, b), Eqs. (7) or (8) allows incorporating some forms of in-
homogeneity and anisotropy in the correlations, while a particular desirable advantage20

of Eq. (7) is the capability of representing complex vertical correlations, which will be
further discussed when the estimates of CSx, CSy , and CSz are described in Sect. 5.

4.3 Increments of lumped variables to species

The data assimilation scheme formulated above estimates five lumped variables
formed from the mass concentrations of the aerosol species treated in MOSAIC, but
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the ultimate analysis solution is concerned with the mass concentrations of those indi-
vidual species. By definition, the increment of a lumped variable can be expressed as

5

δxS =
L∑

l=1

δml , (9)

where S again stands for EC, OC, NO−
3 , SO2−

4 , or OTR. Here δml is the mass con-

centration of one MOSAIC specie for a single size bin. Since EC, BC, NO−
3 , and SO2−

4
are MOSAIC species, the summation is across all the size bins, and L equals Nbin,
the number of the size bins used. Since OTR includes four MOSAIC species, the sum-10

mation is for the four species and across all the size bins, and L thus becomes 4Nbin
for OTR. We calculate the analysis increment of mass concentration for one MOSAIC
specie and one size bin as

δma
Sl =

σ2
Sl

L∑
i=1

σ2
Sl

δxa
S , (10)

where σSl are the root-mean-square (RMS) of the mass concentration background er-15

ror for each specie and size bin. Equation (10) is used since it can be derived as a min-
imum error variance estimation with the constraint (Eq. 9) and under the assumption
that δxa

S has no error and the background errors associated with mSl are uncorrelated.
With δma

Sl at our disposal, we can obtain the final analysis mass concentrations for
each MOSAIC species and size bin as20

ma
Sl =


mb

Sl +δma
Sl if δma

Sl ≥ 0

mb
Sl +δma

Sl if δma
Sl < 0; mb

Sl +δma
Sl ≥ crSl

mb
Sl if δma

Sl < 0; mb
Sl +δma

Sl < crSl

, (11)
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where crSl is a positive value. We use crSl to ensure that ma
Sl is non-negative, and

no reduction is made to the background state when the background concentration is
lower than the observational errors. In practice, aerosol observational errors are often
not well characterized. In the current application, we empirically specify crlS = 0.1σSl .5

After the mass concentration increments are added to the background state, the
number concentration increments should be added accordingly. For simplicity, we as-
sume that the ratio of the number concentration to the mass concentration for each size
bin remains to the same as it was in the background state. Let’s denote this ratio as γ.
γ is calculated from the background state. The analysis of the number concentrations10

is

na
k = nb

k +γ
(
ma

k −mb
k

)
, k = 1, . . .,Nbin (12)

where nb
k is the background number concentration within one size bin, and ma

k is the
total mass concentration summed for all the species within one size bin and computed
from ma

Sl given by Eq. (11).15

4.4 Observational operators

In present observing networks, in-situ observations primarily consist of total surface
concentrations of particular matter, such as PM1.0, PM2.5 or PM10, and speciated con-
centrations of EC, OC, NO−

3 , SO2−
4 and others. These two types of observations are

assimilated in this study. The observational operators H represent the summation of20

the concentrations of the corresponding species across the size bins and a linear hor-
izontal interpolation operator The total concentrations of particular matter are indirect
observations, and the observational operators then represent the summation of the
concentrations of all the species across the appropriate size bins. For example, the
observational operator for the concentration of PM2.5 represents the summation of the
concentrations of all the species across the first three size bins (see Sect. 3).5
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The observational operator can be complicated when the observations are not the
measured concentration at a given time, but the accumulated concentration for a period
of time. A typical example is the observations obtained from the IMPROVE (Interagency
Monitoring of Protected Visual Environments) network (http://vista.cira.colostate.edu/
improve/). The observations are daily mean concentrations. To assimilate such tempo-10

ral mean concentrations, we first compute the temporal mean observation innovation.
The computed innovation is then assumed to be constant during the period of time and
thus assimilated as the innovation at the given time.

For the daily mean concentrations from IMPROVE, for example, we compute the
daily mean innovation for the period of time 12 h before and after the data assimilation15

time. The assumption used here is similar to that used in the First-Guess at the Appro-
priate Time (FGAT) method, which has been employed in several meteorological data
assimilation systems (e.g., Simmons, 2000; Lorenc et al., 2000).

5 WRF/Chem configuration and background error covariance estimate

The WRF/Chem model is configured as a nested set of three spatial domains (Fig. 1).20

The large domain encompasses the Western United States and adjacent coastal re-
gion (36 km grid), the middle domain a smaller portion of the western states and the
California coast (12 km grid), and the small domain the Los Angeles Basin (4 km grid).
The nesting is two-way for both interior domains. Each domain has 40 vertical levels,
with the vertical grid stretched to place the highest resolution in the lower troposphere.25

The analyses presented here will be primarily confined to the 4 km domain.
We use version 3.3 of WRF/Chem. In WRF/Chem, the chemistry (both aerosol and

gas-phase) and meteorological components are fully coupled (Grell et al., 2005; Fast
et al., 2006). The parameterizations of physical processes used that are most relevant
to aerosols are summarized as follows: the Monin-Obukhov surface layer scheme, the
Yonsei University (YSU) boundary-layer scheme, the Morrison 2-moment microphysics5

scheme, the Noah land surface model and the Dudhia radiation scheme for longwave
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and shortwave interactions with clear-air and clouds (Skamarock et al., 2005 and ref-
erences therein). For the chemical processes, the MOSAIC (4 bin) aerosol scheme
is used. The Carbon Bond Mechanism (CBM-Z) scheme is used for the Gas-phase
chemistry processes. The emissions were derived from National Emission Inventory10

2005 (NEI’05) for both aerosols and trace gases (Mckeen et al., 2002).
In Sect. 4.2, we developed an approximate expression for the background error co-

variance. According to Eqs. (2) and (7), we need to estimate the RMSE matrix D and
one-dimensional correlation matrices for each analysis variable. To estimate these ma-
trices, we follow a methodology used in meteorology. An overview of methods to diag-15

nose background error statistics for application in Numerical Weather Prediction (NWP)
is provided in Bannister (2008). The main approaches are based on either statistics of
observations minus model differences at observation locations, or on model fields gen-
erated on the model grid that can be used statistically as a proxy of the background
error; this second method is known as the NMC method (Parrish and Derber, 1992).20

The observation innovation method cannot be used in aerosol data assimilation be-
cause of the lack of three-dimensional speciated observations, and hence the NMC
method is used here.

The NMC method has been used for estimating the aerosol concentration back-
ground error covariance (Benedetti and Fisher, 2007; Kahnert, 2008). In the ECMWF25

4DVAR system (Benedetti and Fisher, 2007), the differences between 48 h and 24 h
forecasts of aerosol mixing ratios for sea salt, desert dust and continental particulates
are assumed to be a proxy of the background error. While the NMC method has not
yet been fully justified in the context of aerosol data assimilation, the ECMWF 4DVAR
system indicates that it can be useful at least in some circumstances. We estimate the
aforementioned error covariance matrices following Benedetti and Fisher (2007).

We generate one month of the 48 h and 24 h forecast differences from 15 May 2010
to 14 June 2010. The forecast is initialized using the North American Regional Reanal-
ysis (NARR) (Mesinger et al., 2006). The interior boundary conditions and sea surface5

temperatures are updated at each initialization, with the lateral boundary conditions
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updated continuously throughout the forecast. Note that the NARR fields do not include
any aerosol variables. The initial conditions for the aerosol species are simply from the
forecast without being updated. Hence, the forecast difference arises from the differ-
ence in the meteorological fields, which in turn give rise to differences in vertical and10

horizontal transports, dry and wet depositions, and chemical processes that are sensi-
tive to temperature, moisture and cloud water content. It is assumed that these differ-
ences are representative of the short-term forecast errors in transport-related aerosol
processes, and can be used to calculate background error statistics.

We directly estimate the RMSE matrix D. The domain average RMSEs for five15

species are shown in Fig. 2. The RMSEs differ among the species. The largest RMSE
is associated with NO−

3 , while the smallest RMSE is associated with OC. The vertical
distributions of the RMSE for all the species display a relatively rapid decrease with
height.

The fine structures of the RMSE vertical distribution are related to boundary layer20

heights. In Fig. 3, the boundary layers primarily consist of marine layers with depths of
less than 400 m, and inland boundary layers with depths of around 1000 m. There is
a noticeable increase in the SO2−

4 RMSEs at the boundary layer height.
The three-dimensional correlation matrix CS has been approximately factorized and

expressed as the Kronecker product of three one-dimensional correlation matrices CSx,25

CSy and CSz for each species in Eq. (7), and these three one-dimensional matrices
need to be estimated. Although the horizontal correlation matrices CSx and CSy can
be directly computed using the proxy of the background error (Li et al., 2008b), we
here use Gaussian functions to represent then correlation functions for constructing
CSx and CSy , and also assume that the correlations are isotropic. With these two as-
sumptions, a correlation function between two points r1 and r2 in the horizontal can

be expressed as cS (r1,r2) = e−(r2−r1)2/2L2
S , where LS is the horizontal correlation scale.

The correlation length scale LS becomes the only parameter that need to be estimated.
This correlation length scale is estimated using the proxy of the background error. The5

correlation cS reduces to the value of e−1 when the distance of two points r1 and r2 is
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measured LS . This distance averaged over the model domain is used as the estimate
of LS . The estimated LS are 36, 32, 20, 52, 48 km for the five species, EC, OC, NO−

3 ,

SO2−
4 , and OTR, respectively.

The estimated correlation length scales are significantly different among distinct10

species. The largest scale is associated with SO2−
4 , which indicates that the back-

ground error has relatively large scales horizontally, and the influence of an SO2−
4 ob-

servation could spread farther than other species. In contrast, the smallest correlation
length scale is associated with NO−

3 , and it is about 2/5 of the scale associated with

SO2−
4 . Such differences among the correlation length scales suggest a need to use15

multi-species concentrations as the analysis variables.
The vertical correlation matrices CSz are computed directly from the proxy data.

This can be done since CSz is only an nz ×nz matrix. A directly-computed CSz helps
represent the complicated vertical structures of the vertical correlations due to the
discontinuity-like transition of the vertical distributions between the boundary layer and20

the free atmosphere above. Such structures are difficult to represent using analytical
functions. The computed vertical correlation matrices of CSz are displayed in Fig. 4. The
vertical correlation for OC is not shown, because it is similar to that for EC. A salient and
common feature of these vertical correlations is their strong relation to the boundary
layer heights. Consistent with the discontinuity-like transition in the background vertical25

RMSE around the top of the boundary layer, the vertical correlations display a jump
at the top of boundary layer. Another feature is worth mentioning is that the vertical
correlation for NO−

3 shows a relatively small vertical scale.

6 Applications to the prediction of PM2.5

The Greater Los Angeles area continues to be the most polluted metropolitan region
in the U.S., and prediction of the spatial and temporal distributions of PM2.5 in the
region remains a challenge. Here the 3-DVAR system is used to assimilate PM2.5

13531

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

measurements along with some speciated concentration measurements, and then pre-5

dictions are performed. This data assimilation and prediction experiment has been car-
ried out for a period of one month from 12:00 UTC, 15 May to 12:00 UTC, 14 June 2010.
This period of time was chosen because the CalNex 2010 field experiment took place
at this time (http://www.esrl.noaa.gov/csd/calnex/). CalNex 2010 was a major climate
and air quality study in California conducted by the National Oceanic and Atmospheric10

Administration (NOAA) and the California Air Resources Board (ARB), and thus more
observations are available for assimilation and evaluation.

6.1 Implementation of data assimilation and forecast

To assess the data assimilation analyses and subsequent predictions, we compare the
results from the experiments with and without data assimilation. The experiments are15

carried out as follows. The forecast is initialized at 00:00 UTC daily using the NARR
meteorological fields, and then the forecast is run out to 36 h, that is, till 12:00 UTC
on the following day. The first 12 h of the forecast are discarded as a model spin-up
for the meteorological fields. This spin-up allows the WRF/Chem to produce not only
proper clouds and precipitation but also fine structures in the wind fields associated20

with the higher resolution of the model and surface topography. The chemical fields,
including both the gaseous and aerosol species, are updated daily at 12:00 UTC after
the 12 h spin-up of the meteorological fields, using the forecast from the previous day.
For convenience, we refer to these results as the control analyses or forecasts.

The aerosol data assimilation is carried out every 6 h. A time window of 6 h is used
to resolve diurnal variations. Specifically, the data assimilation is carried out at 12:00
UTC, after the above-mentioned spin-up, and the 6 h aerosol forecast initialized by the
prior aerosol data assimilation analysis valid at 06:00 UTC is used as the background
state. Then the aerosol analysis obtained is used as the initial condition at 12:00 UTC5

for the subsequent 6 h forecast, which generates the background state for the aerosol
data assimilation at 18:00 UTC. In this way, the data assimilation and forecast cycle
can continuously advance in time. It is worth noting that the aerosol feedback to the
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radiation and cloud processes is turned off in the WRF/Chem and thus the meteoro-
logical fields are exactly the same as those in the control experiment.10

The aerosol observations assimilated have two types as mentioned in Sect. 4.4. One
type is mass concentrations of PM2.5 from Air Resources Board (ARB) of California En-
vironmental Protection Agency (available at http://www.arb.ca.gov/aqmis2/aqdselect.
php), which consist of hourly concentration measurements. There are a total of 42 sta-
tions in the model domain (Fig. 1). The hourly observations are assimilated, but only15

at those hours when the data assimilation is carried out. The other type are the daily
mean speciated mass concentrations from the IMPROVE network, and the daily mean
innovations (see Sect. 4.4) are assimilated at 12:00 UTC. For those observations as-
similated, a simple quality control is applied. First, observations with negative values
are rejected; second, the differences between the observations and 6 h forecasts (O-20

F) are examined, and those observations with the O-F values greater than 120 gm−3

are rejected. The observational error is specified as half of the background root mean
square errors.

Additional observations of speciated concentrations are available during the CalNex
2010 experiment (available at http://www.esrl.noaa.gov/csd/calnex/) from one station25

located on the California Institute of Technology campus (see Fig. 1). These obser-
vations consist of the concentrations of EC, OC, NO−

3 , SO2−
4 , and others. They are

not assimilated but are used as independent observations to assess the skill of the
analyses.

6.2 Assessment of data assimilation analyses

We first compare the analysis PM2.5 against the observations that are assimilated. To
quantify the difference, we analyze biases, correlations and root-mean-square differ-
ences between data assimilation analyses and observations. For simplicity, we refer
to root-mean-square differences as root-mean-squared errors (RMSEs), although they5

are not RMSEs in a strict sense because the observation errors can be significant.
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These biases, correlations and RMSEs will also be used later in analyzing the fore-
casts.

Figure 5 presents a scatter plot of the PM2.5 concentrations from the control and
data assimilation analysis, respectively, against the observations for a period of one10

month. Observations from each of the 42 stations and at all four times of the day
with data assimilation, that is, at 00:00, 06:00, 12:00 and 18:00 UTC, are used. The
control PM2.5 results display a significant underestimation. The observed mean con-
centration of PM2.5 is 21.5 µgm−3, while that of the control analysis is 14.9 µm, a bias
of −7.6 µgm−3 and thus about 30% lower than the observed. The correlation is 0.5115

and the RMSE is 11.0 µgm−3, compared with a standard deviation of 26.8 µgm−3 in
the observed PM2.5. In the data assimilation analysis, the bias is greatly reduced, to as
small as −1.0 µgm−3. The correlation between the analysis and observed PM2.5 is as
high as 0.87, while the RMSE decreases to 4.2 µgm−3. These results show that this
3-DVAR scheme can effectively assimilate the PM2.5 observations.20

We have introduced multi-species concentrations as analysis variables, aiming to
enhance the capability of the scheme in reproducing species concentrations. The con-
centrations of four major species – EC, OC, NO−

3 , and SO2−
4 are evaluated here, using

the speciated observations obtained at the super observing station (Fig. 1). We note
that these speciated observations are not assimilated and thus are independent data.25

Figure 6 shows the scatter plots of analysis species concentrations against the ob-
servations at the super observing station. The concentrations of all four species are
improved in both their correlation and RMSE. Relative to the control results, the corre-
lation increases from 0.1 for EC to 0.2 for NO−

3 and the RMSEs are reduced by 10 %

for OC to 50 % for NO3−. The RMSE increases for EC, but this is due to the bias.
The biases in the NO−

3 and SO2−
4 concentrations are appreciably reduced, but an in-

crease in bias occurs in the EC and OC concentrations. The increase of these biases5

is worth discussing. The EC and OC concentrations show a positive bias in both the
control and analysis results, and this bias is opposite to that of the PM2.5 bias in sign,
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while the NO−
3 and EC, SO2−

4 concentrations show a negative bias. Note that the as-
similation of IMPROVE observations have relatively little impact on the analysis at this
location, because there is no IMPROVE station in the area surrounding this location.10

Thus the assimilation of PM2.5 gives rise to increases in the biases in the EC and OC
concentrations. This increase in bias actually indicates an inherit difficulty when only
PM2.5 observations are assimilated, that is, the individual species concentration bias
can deteriorate when the PM2.5 and species concentration biases have opposite signs.

6.3 Assessment of forecasts15

One of the ultimate goals of developing this 3-DVAR system is to improve our capability
for predicting aerosol concentrations. Here we evaluate forecast skill in PM2.5 concen-
trations out to 24 h. Figure 7 presents the correlations and RMSEs as a function of
forecast lead time. The 24 h forecast is initialized with the analysis at 12:00 UTC, which
corresponds to 05:00 LT. The 0h forecast is the data assimilation analysis at 12:00 UTC.20

The correlations and RMSEs show that the forecast has consistent skill. Comparing the
correlations and RMSEs with those from the control forecast without aerosol data as-
similation, a positive impact on skill can be seen all the way out to 24 h.

Examining all forecast durations from 6 h to 24 h, one characteristic seen is that there
is not a monotonic decrease in skill as the forecast duration increases. Actually, dur-25

ing the period from 6 h to 24 h, the forecast correlation increases. The RMSE shows
a maximum value for the 6 h forecast and is basically flat from 12 h to 24 h. Relative
to the control forecast, both the correlation and RMSEs display no significant varia-
tions from 12 h to 24 h. Another characteristic is the large increase in correlation and
decrease in RMSEs during the first 6 h. These two characteristics of the forecast skill
are not often encountered in meteorological data assimilation, and may suggest an in-
herit challenge in aerosol data assimilation or the need for the incorporation of dynamic5

balance among aerosol components and between aerosol and gaseous components.
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We have seen (Fig. 1) that the PM2.5 observations are heterogeneously distributed.
A related question is whether the forecast skill is also spatially heterogeneous in as-
sociation with this heterogeneous distribution of observations. We have analyzed the
spatial distribution of both the correlations (not shown) and RMSEs for the 24 h fore-10

cast. The distributions of RMSE are shown in Fig. 8. From Fig. 8a and b, we see that
the RMSE of the 24 h forecast shows a significant decrease in areas where the RMSE
is relatively larger in the control forecast without data assimilation, including most of
the Los Angeles area. To show this decrease in the RMSE more clearly, the difference
between the control forecast and the 24 h forecast with data assimilation is shown in15

Fig. 8c. A decrease in RMSE is seen at most of the observing locations, but there are
four locations where the RMSEs increase. We note that these four locations are located
along the coast.

The forecast of individual species is more challenging than that of the total PM2.5
concentration, but the results are encouraging. Figure 9 presents the 24 h forecast cor-20

relations and RMSEs at the super observing station. Most encouraging is that, in terms
of both correlations and RMSE, the error reduction in the analysis NO−

3 concentration

(Fig. 9) persists up to 24 h. The correlations of the OC and SO2−
4 concentrations are

also larger than that of the control forecast up to 24 h, and the correlation of the EC
concentrations is larger than that of the control forecast up to 18h. Except the NO−

325

forecast, the RMSEs of the individual concentrations are also larger than that of the
control forecast for a relatively short period of time, and this is because a significant
part of the RMSEs is due to the bias.

7 Conclusions and discussions

A 3-DVAR data assimilation system for the MOSAIC aerosol scheme in WRF/Chem
has been developed and presented. MOSAIC provides a comprehensive represen-
tation of aerosol species and size distributions that result from a variety of pollutant
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emissions. This 3-DVAR scheme is formulated and implemented in an attempt to take5

full advantage of the MOSAIC scheme.
The 3-DVAR system developed can be characterized as a two-step scheme. The

total concentrations of individual species, defined as the sum of the concentrations
across all size bins, are used as analysis variables, and thus the analysis variables
consist of the eight concentrations of the MOSAIC aerosol species. In this study, four10

size bins is used. The first step is to determine analysis increments for these eight
concentrations following a 3-DVAR methodology (Sect. 4.1). The second step is to dis-
tribute the analysis increments over four size bins. The distribution is inversely related
to the background error variances. The number concentrations are adjusted based on
the ratio of the mass and number concentration in the background state.15

This system was applied to the analysis and prediction of PM2.5 in the Los Angeles
basin during CalNex 2010. Surface PM2.5 and speciated concentration observations
were assimilated. To evaluate the performance of the scheme, we carried out control
forecasts, which were initialized with the North America Regional Reanalysis (NARR)
and used both aerosol and trace gas emissions derived from National Emission In-20

ventory 2005 (NEI’05). The comparison of the control forecasts and the forecasts with
aerosol data assimilation against observations demonstrated that the data assimilation
generated analyses with significantly reduced errors, which improved the subsequent
forecasts of PM2.5 up to 24 h. We also evaluated the performance of the forecasts of
elemental carbon, organic carbon, nitrate, and sulfate concentrations. The data assim-25

ilation significantly improved the forecast of sulfate concentrations up to 24 h, while the
improvement extended up to 12–18 h for the other three species.

We have emphasized the use of multi-species concentrations as analysis variables.
Because of this, this 3-DVAR has the capability of simultaneously assimilating total
and speciated concentrations observations, such as total PM2.5 concentrations and
speciated concentrations from the IMPROVE network. The use of multi-species con-
centrations is also desirable for representations of the background error covariance.5

In Sect. 5, we showed that both the horizontal and vertical scales of the background
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errors correlations are significantly different, and this difference needs to be accounted
for. We carried out an experiment (not presented), in which the background error cor-
relation of each species was replaced by that estimated for PM2.5 using the 48 h minus
24 h forecast described in Sect. 5, and showed that this degraded the performance.10

In this study, only surface observations were assimilated, but this 3-DVAR scheme
has been developed to assimilate additional observations from aircraft and satellites.
With more observations assimilated, this data assimilation system is expected not only
to further improve forecasts but also to be of use in other applications. For example, the
output can be used to interpolate limited observations for the evaluation of numerical15

models of aerosol-related processes such as aerosol-cloud interactions.
Despite the promising performance of this 3-DVAR system, a few fundamental as-

sumptions used warrant further examination. The most fundamental assumption is
that the background and observational errors are Gaussian. However, the evidence
shows that aerosol concentrations tend to be non-Gaussian (Seinfeld and Pandis,20

2006). While the background errors may not necessarily follow the aerosol concentra-
tion distributions, there is a possibility that the background errors are non-Gaussian. In
addition, aerosol concentrations are strictly nonnegative quantities, therefore errors in
these quantities cannot be strictly Gaussian distributed, although they may be approx-
imately so since the Gaussian density assigns positive probability to negative values25

of these quantities (Cohn, 1997). A systematic analysis is needed to characterize the
background error distribution. Another assumption is that the background errors are un-
correlated between different types of species and between distinct size bins. This is an
ad hoc assumption made simply to render the problem computationally manageable.
The correlations between different bins can be significant, because one species often
arises from same sources and transfers across the bins. The consequences of this as-
sumption should be quantified, and relaxation of this assumption should be pursued. In
the present implementation, gaseous components are not involved. However, aerosol
particles in the atmosphere contain a variety of volatile compounds (ammonium, ni-5

trate, chloride, volatile organic compounds) that can exist either in the particulate or
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gas phase, and these two phases are often in thermodynamic equilibrium. Assimila-
tion of gaseous components may be required to further improve the forecast of aerosol
species concentrations.
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Figure 1. Model domains, topography and location of observations. The three nested 

model domains are shown in the left panel. The right panel gives the topography in 

the small domain along with the locations of the 42 PM2.5 monitoring stations (black 

dot) operated by the California Air Resources Board (ARB) and one super observing 

station (red square), which was located on the campus of the California Institute of 

Technology and collected speciated aerosol concentrations during the CalNex 2010 

field experiment. 

(a) 
(b) 

Fig. 1. Model domains, topography and location of observations. The three nested model do-
mains are shown in the left panel. The right panel gives the topography in the small domain
along with the locations of the 42 PM2.5 monitoring stations (black dot) operated by the Cal-
ifornia Air Resources Board (ARB) and one super observing station (red square), which was
located on the campus of the California Institute of Technology and collected speciated aerosol
concentrations during the CalNex 2010 field experiment.
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Figure 2. Vertical distribution of the root-mean-square of the background errors in 

mass concentration for five species, estimated using the differences between 24 

and 48 h forecasts valid at the same time.   
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Fig. 2. Vertical distribution of the root-mean-square of the background errors in mass concen-
tration for five species, estimated using the differences between 24 and 48 h forecasts valid at
the same time.
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Figure 3. Boundary layer heights (m) at 11 UTC, 18 October, 2011 generated by 3 

WRF/Chem, initialized at 00 UTC, 16 October, 2011 with the North America Regional 4 

Reanalysis (NARR).   5 

  6 

Fig. 3. Boundary layer heights (m) at 11:00 UTC, 18 October 2011 generated by WRF/Chem,
initialized at 00:00 UTC, 16 October 2011 with the North America Regional Reanalysis (NARR).
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Figure 4. Vertical correlations of the background errors for EC, NO�
�, SO�

��, and OTR. 

These correlations are computed using differences between 24 and 48 h forecasts valid at 

the same time.  A localization was applied with a vertical scale of 3500 m. The contour 

interval is 0.1. 
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Fig. 4. Vertical correlations of the background errors for EC, NO−
3 , SO2−

4 , and OTR. These
correlations are computed using differences between 24 and 48 h forecasts valid at the same
time. A localization was applied with a vertical scale of 3500 m. The contour interval is 0.1.
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 1 

Figure 5. Scatter plots of the PM2.5 mass concentrations against observations in the 2 

analysis with (a) and without (b) data assimilation. The observations are assimilated, 3 

and consist of the 00, 06, 12 and 18 UTC observations from the 42 ARB monitoring 4 

stations during the period 12 UTC, 5 May to 12 UTC, 14 June, 2010. 5 

 6 
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Fig. 5. Scatter plots of the PM2.5 mass concentrations against observations in the analysis
with (a) and without (b) data assimilation. The observations are assimilated, and consist of the
00:00, 06:00, 12:00 and 18:00 UTC observations from the 42 ARB monitoring stations during
the period 12:00 UTC, 5 May to 12:00 UTC, 14 June 2010.
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Figure 6. Scatter plots of model mass concentrations against observations with (left column) 

and without (right column) data assimilation for the species of EC, OC, NO�
�, and SO�

��, 

respectively. These observations are not assimilated and are thus independent data. These 

observations are obtained hourly from the super monitoring station during the CalNex 2010 

field experiment.  
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Fig. 6. Scatter plots of model mass concentrations against observations with (left column) and
without (right column) data assimilation for the species of EC, OC, NO−

3 , and SO2−
4 , respectively.

These observations are not assimilated and are thus independent data. These observations are
obtained hourly from the super monitoring station during the CalNex 2010 field experiment.

13549

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

48 

 

 1 

Figure 7. Correlations (a) and root-mean square errors (RMSEs in µg/m3) (b) of the 2 

total PM2.5 concentration forecasts against observations as a function of forecast 3 

duration. The forecast is initialized at 12 UTC. Both correlations and RMSEs are 4 

calculated against the observations from 42 stations during the period 12 UTC, 5 May to 5 

12 UTC, 14 June, 2010. The black bars are for the control forecast without data 6 

assimilation, and the red bars for the forecast with data assimilation. 7 

 8 

  9 

(b) (a) 

Fig. 7. Correlations (a) and root-mean square errors (RMSEs in µgm−3) (b) of the total PM2.5
concentration forecasts against observations as a function of forecast duration. The forecast is
initialized at 12:00 UTC. Both correlations and RMSEs are calculated against the observations
from 42 stations during the period 12:00 UTC, 5 May to 12:00 UTC, 14 June 2010. The black
bars are for the control forecast without data assimilation, and the red bars for the forecast with
data assimilation.
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Figure 8. Spatial distribution of RMSEs of the 24 h forecasts.  (a) shows the RMSEs of 

the control forecast, and (b) the RMSEs of the 24 h forecast with data assimilation. The 

RMSE difference between the control and 24 h forecast with data assimilation is shown 

in the panel (c), in which a negative value indicates a decrease of RMSE arising from 

data assimilation. The RMSEs are in μg/m3. 
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(a) 

(b) 

(c) 

Fig. 8. Spatial distribution of RMSEs of the 24 h forecasts. (a) shows the RMSEs of the control
forecast, and (b) the RMSEs of the 24 h forecast with data assimilation. The RMSE difference
between the control and 24 h forecast with data assimilation is shown in the panel (c), in which
a negative value indicates a decrease of RMSE arising from data assimilation. The RMSEs are
in µgm−3.
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Figure 9. Correlations (left) and root-mean square errors (RMSEs in µg/m3) (right) of the 

specie concentration forecasts against observations as a function of forecast duration. The 

forecast is initialized at 12 UTC. Both correlations and RMSEs are calculated against the 

observations from 42 stations during the period 12 UTC, 5 May to 12 UTC, 14 June, 2010. 

The black bars for the control forecast without data assimilation, and the red bars for the 

forecast with data assimilation. 
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Fig. 9. Correlations (left) and root-mean square errors (RMSEs in µgm−3) (right) of the specie
concentration forecasts against observations as a function of forecast duration. The forecast is
initialized at 12:00 UTC. Both correlations and RMSEs are calculated against the observations
from 42 stations during the period 12:00 UTC, 5 May to 12:00 UTC, 14 June 2010. The black
bars for the control forecast without data assimilation, and the red bars for the forecast with
data assimilation.
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